The timetable of laminar neurogenesis contributes to the specification of cortical areas in mouse isocortex.
نویسندگان
چکیده
In the primate visual cortex, the birthdate of neurons in homologous layers differ on either side of the 17-18 border suggesting that there might be different timetables of laminar histogenesis in these two areas (Dehay et al. [1993] Nature 366:464-466 and Kennedy et al. [1996] Soc. Neurosci. Abst. 22:525). Because of the potential importance of these findings for understanding mechanisms that generate areal identity, we have developed an experimental approach that makes it possible to accurately compute the timetable of laminar histogenesis from birthdating experiments. Here we report the results of an exhaustive examination of the tempo of layer production in five cortical areas of the mouse. Tritiated thymidine pulse injections were made during embryonic development and labeled neurons were examined in three frontoparietal areas (areas 3, 4, and 6) and two occipital areas (areas 17 and 18a) of the adult cortex. The correlation between the radial distribution of neurons and the intensities of labeling enabled us to reliably identify first generation neurons (i.e., those neurons that quit the cell-cycle in the first round of mitosis after injection). For each cortical layer, the percentage of first generation neurons with respect to the total number of neurons defined a laminar labeling index. Changes of the laminar labeling index over time determined the timetable of layer formation. The onset and duration of layer formation was identical in the two occipital areas. This finding contrasted with the frontoparietal areas where there were important differences in the timing of infragranular and granular layer formation and noticeably production of layers VIa, V, and IV occurs earlier in area 3 than in area 6. The timing of laminar production of areas 17 and 18a resembles more that of area 3 than that of area 6. With respect to areas 3 and 6, area 4 shows an intermediate but significantly different timetable of layer production. These marked areal differences in the timetable of laminar histogenesis contrasted with the relative homogeneity within areas so that we have been able to demonstrate that the interareal differences are not merely the expression of known neurogenic gradients. These results suggest that in the mouse frontoparietal isocortex, neighbouring regions of the ventricular zone that will give rise to distinct areas follow distinct programs of layer production. These areal differences occur before thalamic innervation and suggest an early regionalisation of laminar histogenesis.
منابع مشابه
Evolution of cytoarchitectural landscapes in the mammalian isocortex: Sirenians (Trichechus manatus) in comparison with other mammals.
The isocortex of several primates and rodents shows a systematic increase in the number of neurons per unit of cortical surface area from its rostrolateral to caudomedial border. The steepness of the gradient in neuronal number and density is positively correlated with cortical volume. The relative duration of neurogenesis along the same rostrocaudal gradient predicts a substantial fraction of ...
متن کاملDistinct developmental growth patterns account for the disproportionate expansion of the rostral and caudal isocortex in evolution
In adulthood, the isocortex of several species is characterized by a gradient in neurons per unit of cortical surface area with fewer neurons per unit of cortical surface area in the rostral pole relative to the caudal pole. A gradient in neurogenesis timing predicts differences in neurons across the isocortex: neurons per unit of cortical surface area are fewer rostrally, where neurogenesis du...
متن کاملSystematic, balancing gradients in neuron density and number across the primate isocortex
The cellular and areal organization of the cerebral cortex impacts how it processes and integrates information. How that organization emerges and how best to characterize it has been debated for over a century. Here we demonstrate and describe in the isocortices of seven primate species a pronounced anterior-to-posterior gradient in the density of neurons and in the number of neurons under a un...
متن کاملEvo-devo and the primate isocortex: the central organizing role of intrinsic gradients of neurogenesis.
Spatial gradients in the initiation and termination of basic processes, such as cytogenesis, cell-type specification and dendritic maturation, are ubiquitous in developing nervous systems. Such gradients can produce a niche adaptation in a particular species. For example, the high density of photoreceptors and neurons in the 'area centralis' of some vertebrate retinas result from the early matu...
متن کاملResponses of primary somatosensory cortical neurons to controlled mechanical stimulation.
The results of psychophysical studies suggest that displacement velocity may contribute significantly to the sensation of subcortical somatosensory neurons. The cortical correlates of these phenomena, however, are not known. In the present study the responses of rapidly adapting (RA) neurons in the forelimb region of cat primary somatosensory cortex (SI) to controlled displacement of skin and h...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of comparative neurology
دوره 385 1 شماره
صفحات -
تاریخ انتشار 1997